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Abstract. The objective of this study was to develop new risk classifications for conversion to Alzheimer’s disease (AD)
by comparing the relative reliability of classifiers in patients with mild cognitive impairment (MCI). The 397 MCI subjects
and all baseline data, including characteristics, neuropsychological tests, cerebrospinal fluid biomarkers and MRI findings in
Alzheimer’s Disease Neuroimaging Initiative (ADNI), were used for analysis by Cox proportional hazard regression, bootstrap
sampling, and c-index. Multivariate Cox regression analysis revealed the following factors to be associated with increased risk
of conversion from MCI to AD during the 53-month follow-up period: AVLT 30-minute delayed recall, AVLT trial 1, Boston
naming, logical delayed recall, trail-making B, CDR-sob, ADAS13, the cortical thickness of the right inferior temporal lobe
(st91ta), and the left hippocampus volume. The combinations of ADAS13 at a cutoff point of 15.67 with CDR-sob at 1.5 or with
the cortical thickness of the right inferior temporal lobe at 2.56 mm3 produced high conversion rates of 92.7% (82.4%–100.0%)
and 88.8% (77.3%–100.0%), respectively, at 48 months. The discriminative ability based on c-index for the proposed combination
was 0.68. The sample size was estimated as 504 in the group with a combination of ADAS13 and CDR-sob whose conversion
rate is highest. The combination of ADAS13 with CDR-sob at an optimal cutoff point has a high reliability in classifying the
MCI patients into high- and low-risk conversion to AD and will be benefit for patients’ assessment and potentially facilitate the
clinical development of novel therapeutics.
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INTRODUCTION

With aging of the population, the prevalence of age-
related diseases, as well as the cost of medicine and
care, should increase, requiring nationwide approaches
to reduce the social burden. Dementia, as represented
by Alzheimer’s disease (AD), is a leading cause of
care-requiring status, which imposes a serious bur-
den on society [1]. Recent advances in molecular
science and imaging technologies have shed light on
the etiological process of AD. However, preventive or
therapeutic strategies have not yet been established.
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Earlier detection and more accurate diagnosis of AD
have been a major interest for all researchers in the
field of AD. Enormous effort has been devoted to this
investigation during recent decades. Research interests
tend to focus primarily on the prodromal stage of AD,
which is termed mild cognitive impairment (MCI).
Subjects with MCI are of particular interest because
they represent a population at particularly higher risk
of converting to AD and a population in which primary
prevention trials can be carried out [2, 3].

Although the use of cerebrospinal fluid (CSF)
biomarkers and magnetic resonance imaging
(MRI)/positron emission tomography (PET) for early
AD detection in routine medical practice is recom-
mended based on all the achievements obtained [4,
5] and the latest diagnosis of MCI and AD published
[6, 7], the application of these recommendations in
clinical practice does not appear to be feasible.

Currently, the major challenges are to determine
the optimal cutoff points for the tests and to compare
their relative reliability, as reported by Petersen [8]. In
this report, we use data of all MCI patients from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
followed-up for 53 months to explore the risk factors
associated with the conversion from MCI to AD and
then to elaborate a new risk classification for MCI
patients using the optimal cutoff points and test combi-
nations. Finally, we computed the sample size required
to detect a hypothetical 25% change in AD incidence
in a 24-month placebo-controlled randomized clinical
trial by using the population at highest risk.

METHODS

Subjects

All data used in the preparation of this arti-
cle were obtained from the ADNI database
(http://adni.loni.ucla.edu). The ADNI was launched
in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Admin-
istration (FDA), private pharmaceutical companies,
and non-profit organizations. The primary goal of
ADNI has been to test whether serial MRI, PET, other
biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the
progression of MCI and early AD. Written informed
consents were obtained from the subjects at each of
the participating centers.

Genetics

Details of the genotyping methods have been pub-
lished. For each individual, we downloaded the APOE
genotype.

MRI

MRI was performed using standardized pro-
tocols on 1·5T MRI units with 3D T1-weighted
sequences optimized for the different scanners as
indicated at http://adni.loni.ucla.edu/about-data-
samples/image-data/ [9]. All images were corrected
for spatial distortion due to gradient nonlinear-
ity and normalized for B1 non-uniformity (also
http://adni.loni.ucla.edu/about-data-samples/image-
data/). MRI measures were reconstructed with the
software program Freesurfer as previously described
in detail [10]. Automated 3D whole-brain segmen-
tation procedure [10, 11] was used. The processing
included automated Talairach space transformation,
intensity inhomogeneity correction, intensity normal-
ization, tissue segmentation (the subcortical structures,
brain stem, and cerebral cortex) [11, 12], automated
correction of parcellation of the cerebral cortex
[13] and topology defects, and surface deformation
to form the gray/white matter boundary and gray
matter/CSF boundary [12]. The cortical thickness
average, standard deviation of thickness, surface
area, and cortical volume were calculated as features.
The automated HMAPS method was also used to
measure several structures such as hippocampal
volume.

Analysis data-set

We downloaded data from LONI (http://adni.
loni.ucla.edu) on 15 November 2010. Only MCI
patients were included in the analysis; all the assess-
ments at baseline and the outcomes within 53 months
were extracted. The factors included in analysis are
as follows. The neuropsychological tests performed
included the Mini-Mental State Examination (MMSE);
Clinical Dementia Rating Scale-sum of box (CDR-
sob); Alzheimer’s Disease Assessment Scale with 13
items (ADAS13); auditory verbal learning test (AVLT),
which includes 8 subscores (AVTOT1-6), AVLT
delayed recall (AVDEL), AVLT 30-minute delayed
recall (AVDEL30); verbal fluency (animal, CATAN-
IMA and vegetable, CATVEGE); logical memory
(which includes two parts: immediate (LIMMTO-
TAL) and late recall (LDEL); Boston naming test

http://adni.loni.ucla.edu
http://adni.loni.ucla.edu/about-data-samples/image-data/
http://adni.loni.ucla.edu/about-data-samples/image-data/
http://adni.loni.ucla.edu
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(BNT); digit span (DIGSCOR), digit symbol sub-
stitution (COPYSCO), Trail-making A (TRAA) and
B (TRAB); clock drawing (CLOCK); age; gender;
education; APOE; CSF tau; p-tau; and A�42. The
factors measured by MRI included the volume, cor-
tical thickness, and surface area of the following
regions: the left and right entorhinal cortex, left and
right hippocampus, left and right inferior temporal
lobe, left and right para hippocampus, and left and
right superior temporal lobe. Left and right olfactory
lobe, left and right hippocampus, and left and right
para hippocampus by uaspmvbm method were also
included.

Statistics

Cox proportional hazard regression models were
used to identify the statistically significant variable
used to create a given split or branch in the survival
tree [14, 15]. First, we performed a univariate Cox
regression analysis and selected factors with p < 0.2
to enter into the multivariate Cox regression analyses
with stepwise variable selection. Factors selected by
multivariate regression (p < 0.05) were then divided
into two groups by a cutoff that produced a maxi-
mum log-rank test statistic for AD incidence. These
binary-transformed variables were assessed in the sur-
vival tree. For survival tree analysis, we set the two
splitting-rules, i.e., p < 0.05 and sample size of each
subgroup in a tree was more than 50.

In one hundred survival trees made by bootstrap
samples, the first frequent combinations were deter-
mined by numbered ranking of first- and second-level
factors in the branches and trees. The selected combi-
nations were used to classify the MCI patients using the
Kaplan-Meier method to estimate survival curves, and
curves were compared by a two-sided log-rank test.
Probability of remaining AD free was presented as the
12-, 24-, and 48-month point estimate. Furthermore,
discriminative ability was assessed with the concor-
dance index (c-index), which is the proportion of all
pairs of subjects whose survival time can be ordered
so that the subject with lower risk is the one who sur-
vived longer [16]. Statistical analyses were done by
using SAS version 9.1(SAS Institute, Inc., Cary, NC,
USA) and R version 2.12.1 with the party, CPE and
Design libraries.

With using subjects from the high-risk subgroups
identified in the consensus trees, we computed sam-
ple sizes for clinical trial. The sample size required
detected a hypothetical 25% change in AD incidence
(1-probability of remaining AD free) at 24 months,

using a two-armed analysis (log rank test) for 90%
power and a 5% type I error rate, in the 24-month
placebo-controlled randomized trial [17].

RESULTS

In total, 397 subjects with MCI at baseline were
included. After almost 53 months of follow-up, 164
MCI subjects converted to AD. The annual crude con-
version rate was 17.3%, 21.0%, 7.1%, and 1.0% in the
1st, 2nd, 3rd, and 4th year, respectively.

The mean age was 74.8 years (range: 55–90 years
old); mean education was 157 years (range: 4.0–20.0).
The number of male subjects was 256 (64.5%); the
number of female patients was 141 (35.5%). We
assume that the converted subjects were no longer fol-
lowed after conversion. The median follow-up period
was 27.0 months (range: 6.4–53.0 m).

Cox proportional hazard regression analyses

In univariate Cox proportional hazard regression
analysis for time to conversion from MCI to AD,
57 factors were included; 41 factors with p < 0.2
were selected to enter into the multivariate Cox
regression analysis (supplementary Table 1; avail-
able online: http://www.j-alz.com/issues/30/vol30-
2.html#supplementarydata03).

After step-wise Cox regression analysis, the fol-
lowing factors were associated with a high risk of
conversion from MCI to AD: MMSE, AVDEL30,
AVLTOT1, BNT, CDR-sob, ADAS13, cortical thick-
ness of the right inferior temporal lobe (st91ta), the
left hippocampus volume (hippl), LDEL, and TRAB
(Table 1).

Combination of the tests using optimal cutoff
points

The optimal cutoffs for selected variables by step-
wise Cox regression analysis were determined using
a maximum log-rank permutation test. The values of
the cutoffs are 1.5, 172 pg/ml, 2, 5, 26, 0.405 mm3,
3, 15.67, 108, 1.78 mm3, 3.08 mm3, and 2.56 mm3

for CDR-sob, A�42, Avdel30, AVTOT1, BNT, hippl,
LDEL, ADAS13, TRAB, cortex volume of the left
entorhinal cortex (LVEntor), cortical thickness of left
entorhinal cortex, st91ta, respectively.

In the analysis of 100 Cox trees by bootstrap sam-
pling, the first two frequent factors at the first level in
the 100 trees were ADAS13 (64) and logical memory
with delayed recall (22). In the trees with ADAS13 as

http://www.j-alz.com/issues/30/vol30-2.html#supplementarydata03
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Table 1
Factors associated with the conversion from MCI to AD (univariate and multivariate regression)

Factors Univariate regression Multiple regression
n HR (95%CI) n HR (95%CI)

AVLT del30 381 0.80 (0.74–0.86) 316 0.90 (0.83–0.99)
AVLT total1 381 0.75 (0.67–0.83) 316 0.76 (0.66–0.86)
Boston naming 379 0.95 (0.92–0.99) 316 1.06 (1.02–1.12)
Logic memory delay recall 381 0.80 (0.75–0.85) 316 0.93 (0.86–1.00)
Trail-making B 381 1.01 (1.00–1.01) 316 1.00 (1.00–1.01)
CDR-sob 381 1.59 (1.35–1.86) 316 1.36 (1.13–1.64)
ADAS13 378 1.12 (1.09–1.15) 316 1.05 (1.02–1.10)
St91ta 333 0.17 (0.09–0.30) 316 0.31 (0.14–0.68)
Left hippocampus volume 366 0.004 (0.00–0.03) 316 0.03 (0.002–0.43)

AVLT del30: Auditory and verbal learning test: 30-minute delayed recall; St91ta: cortical thickness of the right
inferior temporal lobe.

the first level, the top three factors at the second level
were CDR-sob (29), volume of the interior temporal
(14), and logical memory delayed recall (13). There-
fore, the top three combinations: 29 (combination A),
14 (combination B), and 13 (combination C) were
selected as risk classifiers. Combination A yielded a
low-risk group (A1:ADAS13 ≤15.67), a moderate-risk
group (A2: ADAS13 >15.67 and CDR-sob ≤1.5), and
a high-risk group (A3: ADAS13 >15.67 and CDR-
sob >1.5). Combination B was as follows: low risk
(B1: ADAS13 ≤15.67), moderate risk (B3: ADAS13
>15.67 and st91ta >2.56 mm3), and high risk (B2:
ADAS13 >15.67 and st91ta ≤2.56 mm3). Combina-
tion C was: low risk (C1: ADAS13 ≤15.67), moderate
risk (C3: ADAS13 >15.67 and LDEL >3), and high risk
(C2: ADAS13 >15.67 and LDEL ≤3). (Figs. 1A–C)

The incidence of AD among the entire cohort was
5.6% (3.2%–7.9%) at 12 months and 58.1% (95%
CI: 50.2%–66.0%) at 48 months. The incidence of
combination A3 was 12.9% (95% CI: 6.4%–19.2%)
and 92.7% (95% CI: 82.4%–100.0%) at 12 and
48 months, respectively; for B2, these values were
10.6% (95% CI: 5.3%–15.8%) and 88.4% (95% CI:
76.7%–100.0%). The conversion rate was 70.7% (95%
CI: 58.0%–83.4%) for A�42 at 172 pg/mL and 78.4%
(95% CI: 67.7–89.2%), as determined by left entorhi-
nal cortex volume (LVEntor) of 1.78 mm3 at 48 months
of follow-up. The hazard ratios differed significantly
among subgroups in every combination. The combi-
nation of ADAS13 with CDR-sob resulted in a higher
conversion rate from MCI to AD than did by single
A�42 or MRI findings (Table 2, Fig. 2A–D).

Discriminative ability

We use c-index to assess the discriminative abil-
ity of classification of the combinations. The c-index
was 0.68 (95% CI: 0.65–0.71) for combination A,

0.68 (95% CI: 0.65–0.71) for combination B, 0.68
(95% CI: 0.65–0·71) for combination C, 0.61 (95% CI:
0.56–0.66) for A�42, and 0.63 (95% CI: 0.59–0.66) for
MRI findings related to LVENtor.

Sample size estimation for prevention clinical
trials on conversion from MCI to AD

We use AD incidence as the primary endpoint in
the study population enriched by our risk classifica-
tion (combination A) to calculate the sample size in
randomized double-blind prevention clinical trials on
AD over a 24-month follow-up period, which method
can detect a 25% decrease in incidence.

Various sample size calculations were performed.
The sample size was 504 for the estimation for com-
bination A whose conversion rate was 54.1% at 24
months. The sample size was 556 for the estimation
for combination B whose incidence was 53.3% at 24
months. The value was 956 in the population enriched
by a single CSF protein (A�42) and 884 when based
on MRI findings related to LVENtor. The sample size
was 1230 for subjects from the overall cohort whose
conversion was 28.9% at 24 months.

DISCUSSION

There have been many papers and recommended
diagnosis guidelines for MCI published based on data
from the ADNI as well as from others [6, 7, 18–20].
However, the application of these guidelines to clinical
practice and/or research purposes continues to repre-
sent a challenge.

The results based on the data obtained from the
ADNI showed that compared with the CSF A�42 test or
MRI findings, the combination of ADAS-cog with sev-
eral tests at optimal cutoff points yielded a better risk
classification of MCI in terms of conversion from MCI
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Table 2
AD incidence rate by combination and overall cohort at different time points

Baseline 12th month 24th month 48th month HR (95%CI) C-index Frequency/
n Conv. Incidence % Conv. Incidence % Conv. Incidence % (95%CI) rank in 100

(95%CI) (95%CI) (95%CI) iterations

Average 381 21 5.6 (3.2–7.9) 102 28.9 (24.2–33.6) 161 58.1 (50.2–66.0)
Combination A

Low (A1) 124 2 1.6 (0.0–3.9) 11 9.2 (4.0–14.4) 22 23 (13.7–32.3) 1.0
Moderate (A2) 147 5 3.5 (0.5–6.5) 36 27.5 (19.8–35.2) 64 61.8 (49.1–74.5) 3.2 (2.0–5.2) 0.68 (0.65–0.71) 29/1
High (A3) 110 14 12.9 (6.4–19.2) 55 54.1 (44.3–63.9) 75 92.7 (82.4–100.0) 6.9 (4.3–11.0)

Combination B
Low (B1) 124 2 1.6 (0.0–3.9) 11 9.2 (4.0–14.4) 22 23 (13.7–32.3) 1.0
High (B2) 113 15 13.8 (7.3–20.3) 50 53.3 (43.0–63.7) 68 88.8 (77.3–100.0) 7.2 (4.5–11.7) 0.68 (0.65–0.71) 14/2
Moderate (B3) 144 4 2.8 (0.1–5.5) 41 29.4 (21.8–37.0) 71 68.0 (55.1–80.9) 3.4 (2.1–5.4)

Combination C
Low (C1) 124 2 1.6 (0.0–3.9) 11 9.2 (4.0–14.4) 22 23 (13.7–32.3) 1.0
High (C2) 155 17 11.2 (6.2–16.2) 70 51.2 (42.7–59.7) 94 79.8 (69.5–90.1) 6.2 (3.9–9.8) 0.68 (0.65–0.71) 13/3
Moderate (C3) 102 2 2.0 (0.0–4.7) 21 21.8 (13.6–30.1) 45 69.2 (42.6–85.8) 2.9 (1.7–4.7)

A�42 (pg/ml)
>172 60 1 2.7 (0.0–5.0) 9 16.5 (6.4–26.5) 12 29.8 (10.8–48.8) 1.0 0.61 (0.56–0.66)
�172 133 9 6.8 (2.5–11.2) 46 35.9 (27.6–44.3) 73 70.7 (58–83.4) 3.1 (1.7–5.6)

VLEntor (mm3)
>1.78 148 3 2.0 (0.0–4.3) 23 16.2 (20.1–32.2) 38 32.9 (22.8–43.1) 1.0 0.63 (0.59–0.66)
�1.78 185 13 7.0 (3.3–10.7) 68 37.3 (30.6–44.8) 109 78.4 (67.7–89.2) 3.2 (2.2–4.6)

Conv.: number of conversions from MCI to AD. VLEntor: volume left entorhinal cortex.
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Fig. 1. Classification by different combinations of tests.

to AD. The combination of ADAS-cog at a cutoff point
of 15.67 with CDR at 1.5 or the st91ta at 2.56 mm3

resulted in the highest conversion (92.7% and 88.8%),
while the conversion rate was 70.7% when determined
based on A�42 at 172 pg/ml and 78.4% by LVENtor at a
cutoff of 1.78 mm3 over a 48-month follow-up period.
The c-indices used to measure the classification reli-
ability were 0.68 for combination A and B, 0.61 for
A�42, and 0.63 for MRI findings.

Usually the threshold values used to classify the neg-
ative or positive risk group to predict conversion from
MCI to AD were based on cutoff points discriminat-
ing AD from control health in cross-sectional studies.
Such cutoff points are not appropriate as the threshold
values to predict the conversion in prospective cohort
study because the outcomes are different. We think the
cutoff value of a test that produces a maximum log-
rank test statistic for AD incidence is more reasonable
to be applied to predict conversion. For example, the
cutoff value of A�42 at 172 pg/ml produced a higher
HR (HR: 3.1, 95% CI: 1.7–5.6) than that based on
192 pg/ml (HR: 2.9, 95% CI: 1.4–5.1) suggested by
Shaw [21].

The search for CNS biomarkers to combat today’s
most prevalent neurological diseases is reaching a fever
pitch. With many new innovative strategies available to
utilize these biomarkers, such as their use in diagnostic

assay platforms, as intermediate surrogate endpoints
and as therapeutics themselves, biomarker discovery
and development provide multiple opportunities for
the early diagnosis of neurological disorders. The CSF
protein A�42 and tau or MRI findings have been
hypothesized to have potential utility in identifying
patient populations that are most likely to benefit with
the lowest risk of harm from new therapies [22–25].
Unfortunately, CSF A�42 and tau protein are not the
independent risk factors associated with the conver-
sion from MCI to AD. Although the MRI findings
were still the risk factors in multiple regression anal-
ysis, however, neither single tests nor combinations
were selected as the final model because they provided
no advantage in classifying MCI patients in terms of
C-index or frequency in the context of 100 iterations
of bootstrap sampling.

In accordance with previous reports [4, 5, 18, 20],
MRI findings, such as the VLENtor, the cortical thick-
ness of the left entorhinal cortex, and the volume of
the left and or right hippocampus, were risk factors for
the conversion from MCI to AD in our multivariate
Cox regression analysis. However, our results did not
support the use of such biomarkers in clinical practice
for the early detection of AD or as screening tools for
selecting patients in early-intervention clinical trials
for accelerating drug discovery.
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Fig. 2. Kaplan-Meier curves of conversion from MCI to AD by risk classifications of MCI. A) Conversion curve by overall cohort. B) Conversion
curve by classification of ADAS13 and CDR. C) Conversion curve by classification of ADAS13 and st91ta. D) Conversion curve by classification
of ADAS13 and LDEL.

Observational and interventional research on MCI
and AD over recent decades suggests that prevention
is more likely to succeed than efforts to cure. One
important goal in AD research is to prevent brain cell
damage and loss by intervening early in the disease
process—even before outward symptoms are evident
because by then it may be too late to effectively treat
the disease. Randomized controlled trials have been
conducted to test the efficacy of interventions specif-
ically targeted individuals with early-stage dementia.
Despite intensive research efforts, the pathogenesis and
the natural history of AD remain unclear. In an effort
to improve the quality of the results, clinical trial and
translational research must optimize the approaches
to patient selection, the timing of treatment, and sam-
ple size estimation. The enrichment methods employed
in the current study may facilitate clinical develop-
ment of new therapeutic technologies by dramatically
reducing the sample size of clinical trials. Numerous
studies have sought to estimate the sample size in clin-
ical trials on MCI using different study populations

and various primary endpoints [26, 27]. Notably, the
conversion from MCI to AD is the only true end point
in prevention clinical trials. Changes in ADAS-cog,
CSF biomarkers, and neuroimaging markers are all
surrogates endpoints that require further confirmation.

Although a c-index of 0.68 for the methods of clas-
sification is not high enough, the highest frequency in
100 trees predicts that, currently, it is the best method
for classification compared with that utilizing single
CSF A�42 or MRI findings. Whether this enrichment
strategy can be generally applied to other research stud-
ies remains to be confirmed.

To our knowledge, the patients with MCI in the
ADNI are at the late stage of MCI, having a form of the
disease that may be too advanced for biomarkers to be
used for early detection. Therefore, more studies focus-
ing on the patients with early-stage MCI and novel
factors are needed to for early detection in neuropsy-
chological tests and/or biomarkers and to standardize
the related diagnostic criteria [28, 29]. The altered
clinical presentation observed means that patients had



374 B. Zhou et al. / Risk Classification in MCI for Developing AD

advanced to very early stages of AD, which clini-
cal features as predictors have limitation. However,
ADAS13 and CDR are not used in the diagnosis of
MCI or AD. Before novel biomarkers are established
as good predictors for early detection, the combination
of ADAS13 and CDR-sob test can be used to effec-
tively predict the progression from MCI to AD and be
more appropriate as candidates for clinical application,
such as subjects selection for prevention clinical trials
on the conversion from MCI to AD and in research to
clarify the manifestation and pathogenesis of AD.

Overall, the results indicate that the combinations
of ADAS-cog at a cutoff point of 15.67 with CDR-sob
at a cutoff point of 1.5 is highly reliable in classifying
MCI patients as having a high or low risk of conversion
to AD and is practicable. This approach is noninva-
sive and readily available in the clinic, and thus can
improve patients’ assessment and potentially facilitate
the clinical development of novel therapeutics.
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Ostrowitzki S, Blin O, Irving E, Frisoni GB (2010)
Alzheimer’s Disease Neuroimaging Initiative Enrichment
through biomarkers in clinical trials of Alzheimer’s drugs in
patients with mild cognitive impairment. Neurobiol Aging 31,
1443-1451.

[28] Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore
P, Davis AE, Roe CM, Peskind ER, Li G, Galasko DR, Clark
CM, Quinn JF, Kaye JA, Morris JC, Holtzman DM, Townsend
RR, Fagan AM (2011) Identification and validation of novel
cerebrospinal fluid biomarkers for staging early Alzheimer’s
disease. PLoS One 6, e16032.

[29] Aluise CD, Robinson RA, Cai J, Pierce WM, Markesbery
WR, Butterfield DA (2011) Redox proteomics analysis of
brains from subjects with amnestic mild cognitive impairment
compared to brains from subjects with preclinical Alzheimer’s
disease: Insights into memory loss in MCI. J Alzheimers Dis
23, 257-269.


